Deep Learning
이 책은 딥 러닝의 기초부터 비교적 최근 모델들까지 전반적인 딥러닝에 대한 내용을 다루고 있으며 목차는 다음과 같습니다. 본 포스트 시리즈에서는 Deep Learning을 공부한 후, 다음 목차별로 정리할 계획입니다.
- Introduction
Part I: Applied Math and Machine Learning Basics
- Linear Algebra
- Probability and Information Theory
- Numerical Computation
- Machine Learning Basics
Part II: Modern Practical Deep Networks
- Deep Feedforward Networks
- Regularization for Deep Learning
- Optimization for Training Deep Models
- Convolutional Networks
- Sequence Modeling: Recurrent and Recursive Nets
- Practical Methodology
- Applications
Part III: Deep Learning Research
- Linear Factor Models
- Autoencoders
- Representation Learning
- Structured Probabilistic Models for Deep Learning
- Monte Carlo Methods
- Confronting the Partition Function
- Approximate Inference
- Deep Generative Models
References
[1] Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, 2016 [site]